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Introduction 

Lipoproteins are vital for heart health by transporting 

cholesterol and lipids. LDL, or "bad" cholesterol, can cause 

plaque build-up in arteries, raising the risk of atherosclerosis. 

Conversely, HDL, or "good" cholesterol, removes excess 

cholesterol, reducing cardiovascular disease risk. Maintaining 

a balance between LDL and HDL is critical for heart health. 

Although the liver and intestine are the main sites of 

formation for high-density lipoprotein particles, peripheral 

tissues such as the small intestine, adipose tissue, and 

macrophages can also produce these particles. The primary 

structural proteins of high-density lipoproteins are 
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apolipoproteins, particularly ApoA-I, which are crucial for 

stabilizing the particle and facilitating its interactions with 

enzymes and cell receptors. HDL return extra cholesterol 

from peripheral tissues—such as artery walls—to the liver 

where it is eliminated as bile. This procedure lowers the risk 

of all major cardiovascular illnesses by preventing the 

accumulation of cholesterol in blood arteries. In addition to 

their cardioprotective qualities, HDL also have anti-

inflammatory, antioxidant, and antithrombotic actions. It 

improves endothelial function and reduces LDL oxidation, 

which encourages atherosclerotic plaque development.[1] 

HDL is "good" cholesterol, crucial in lipid metabolism, aids 

cardiovascular health. The role of HDL includes: 

1. RCT: HDL picks up excess cholesterol for excretion in 

bile and helps to prevent the accumulation of 

cholesterol in blood vessels, reducing the risk of 

atherosclerosis and cardiovascular disease.[2] 

2. Anti-inflammatory and antioxidant properties: 

Antioxidant qualities of high-density lipoproteins are 

extremely advantageous. These help to counteract the 

harmful free radicals that trigger LDL cholesterol to 

oxidize. The likelihood of these oxidized LDLs causing 

atherosclerosis is higher. Furthermore, HDLs have an 

anti-inflammatory property that aids in lowering blood 

vessel inflammation. These two procedures are essential 

for preventing atherosclerosis. 

3. Vasodilatation and Endothelial function: HDL supports 

endothelial cell health by increase nitric oxide synthesis, 

which is a potent vasodilator. Vasodilatation, triggered 

on by nitric oxide, enhances circulation and aids in 

preserving normal blood pressure.  Maintains 

cardiovascular health by supporting vascular function 

and shield endothelium cells against harm and 

malfunction. [3] 

 

 
Figure 1: illustrates how HDLs affect the body. 

 
 

Biology of Hdl: 
HDL, the smallest lipoprotein, surrounds cells, comprising 
proteins and lipids. Its varied sub-species reveal diverse 
physiological roles. Lipids arrange in micelle-like structures, 
HDL's lipid composition is crucial for its physiological 
functions, primarily involving cholesterol transport. It 
consists of a core of triglycerides and cholesteryl esters, 
surrounded by a monolayer of phospholipids, with free 
cholesterol essential for particle fluidity and cholesterol 
efflux and uptake [5,6]. HDL proteins and lipids vary greatly 
in concentration, with each particle carrying cholesterol, 
phosphatidylcholine, apoA-I, and apolipoprotein A-II (ApoA-
II) [7]. HDL's primary apolipoprotein, apoA-I, maintains its 
structure and aids in removing excess cellular cholesterol 
through ABCA1. HDL typically forms large spherical 
structures with at least three apoA-I molecules or discoidal 
shapes with two apoA-I copies. Other proteins on HDL, like 
LCAT, CETP, and paraoxonase-1, have crucial but low-
abundance roles. Ancillary proteins, over 200 in number, 
include haptoglobin and alpha-1 antitrypsin, aiding in unique 
biological functions like trypanosome lysis and inflammation 
suppression. HDL's structural role extends beyond 
phospholipids to prevent lipoprotein-X (Lp-X) formation, 

crucial for averting kidney disease. Enzymes like LCAT 
process phospholipids into bioactive molecules and crucial 
for the esterification of free cholesterol, which enables HDL 
to transport cholesterol more efficiently. Triglyceride transfer 
by CETP aids post-prandial lipid delivery to tissues. Plasma 
Paraoxonase 1 (PON1) is an enzyme that plays a crucial role 
in HDL function, providing antioxidant properties and 
protecting it from oxidation, which can lead to atherogenesis 
[8]. Sphingosine-1 phosphate on HDL has biological signalling 
roles. HDL also interacts with miRNAs, though implications 
remain unclear. Recent proteomic analyses and metabolic 
turnover studies indicate that HDL sub-classes maintain a 
stable core-protein composition throughout their lifecycle. 
These sub-classes often contain specialized proteins with 
related functions like haemostasis or protease inhibition. 
HDL's lipid composition is dynamic, with ABCA1, LCAT, 
endothelial lipase, and hepatic lipase playing key roles in lipid 
metabolism. CETP and PLTP facilitate lipid exchange between 
HDL and other lipoproteins. HDL also transports bioactive 
molecules like S1P, contributing to its multifaceted functions 
in cardiovascular health [9,10]. 
Physiology of Hdl metabolism: 
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Figure 2:The primary sources of ApoA-I, a significant HDL apolipoprotein, are the liver and smallintestine. Lecithin cholesterol acyltransferase 

(LCAT) forms mature HDL particles when released apo A-I acquires phospholipids and cholesterol via ABCA1 from peripheral tissues to produce 
discoidal HDL (preβ HDL) and further effluxes cellular cholesterol via ABCG1 and SR-BI. Most of the cholesterol ester (HDL-CE) is absorbed by 

the liver’s LDL receptor (LDLR) after being transferred by CETP from HDL to VLDL and LDL. 

 
1. Synthesis of HDL Cholesterol: 

• HDL cholesterol- ApoA-I is primarily synthesized in 

the liver and intestine. 

• ApoA-I interacts with the ABCA1 cholesterol-

phospholipid transporter, which is expressed by 

hepatocytes and enterocytes to acquire lipids, 

thereby producing nascent HDL particles. 

• These nascent HDL particles then acquire additional 

lipids, including cholesterol and phospholipids, from 

peripheral tissues through a process known as 

reverse cholesterol transport [11]. 

2. Transport of HDL Cholesterol: 

• HDL particles circulate in the bloodstream and interact 

with various tissues and organs to facilitate the removal 

of excess cholesterol. 

• HDL interacts with ABCA1 transporter on peripheral 

cells, such as macrophages, to accept cholesterol and 

phospholipids, forming pre-beta HDL particles. 

• Pre-beta HDL is then converted to alpha HDL through 

the action of LCAT, which esterifies free cholesterol, 

making it more hydrophobic and allowing it to be 

incorporated into the HDL core [12]. 

3. Role of Enzymes, Receptors, and Transport Proteins: 

• LCAT: Converts pre-beta HDL to alpha HDL by 

esterifying free cholesterol [12].  

• ABCA1 Transporter: Mediates reverse cholesterol 

transport and prevents detrimental lipid deposition 

[13]. 

• SR-B1: Located on the surface of hepatocytes and 

steroidogenic cells. Contributes in cholesterol 

metabolism and steroid hormone synthesis [14]. 

• CETP: Influence overall lipid metabolism and 

cardiovascular risk [15]. 

 

 
4. Catabolism of HDL Cholesterol: • Mature HDL particles undergo catabolism primarily in 

the liver, where they are taken up via receptor-

mediated endocytosis. 
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• Hepatocytes express receptors such as SR-B1 and LDL 

receptor-related protein (LRP) that facilitate the uptake 

of HDL cholesterol esters, which are subsequently 

hydrolyzed by hepatic lipase, releasing free cholesterol 

for excretion into bile or conversion to bile acids [16]. 

MECHANISMS OF HDL – MEDIATED CARDIOVASCULAR 

PROTECTION 

1. Reverse Cholesterol Transport: 

Macrophages and foam cells in artery walls are crucial for 

extracting cholesterol via HDL particles. This process is 

known as RCT, aids in eliminating excess cholesterol 

from cells to the liver for excretion [17]. HDL's ability to 

efflux cholesterol may better indicate cardiovascular risk 

than HDL-C levels; pivotal in atheroprotection [18]. HDL 

must traverse the endothelium to access arterial intimal 

cells for cholesterol outflow. Endothelial cells engage 

HDL via SR-BI and ABCG1, facilitating its translocation 

from apical to basolateral compartments. Similarly, lipid-

free apoA-I transcytosis, aided by ABCA1, enables 

lipidation. HDL then interacts with cell receptors, 

initiating selective or non-specific cholesterol efflux [19]. 

ABCA1 and ABCG1 mediate active, unidirectional efflux, 

while SR-BI facilitates passive, bidirectional transfer 

through diffusion [20]. ABCA1, a critical multi-pass 

transporter, drives over 80% of cholesterol efflux from 

loaded cells. This process relies on lipid-free/lipid-poor 

apolipoproteins and small pre-beta HDL particles, vital 

for mature HDL formation [21]. ABCG1, along with ABCA1 

and LCAT, contributes to the formation of large HDL2 

and HDL3 particles through cholesterol efflux. While 

ABCG1 aids in HDL synthesis, its role in cholesterol 

efflux from macrophages appears quantitatively less 

significant than ABCA1 [22]. SR-BI enables bidirectional, 

ATP-independent cholesterol flux across mature HDL 

and plasma membranes, primarily in hepatocytes but 

also in macrophages, adipocytes, and other cells [23]. 

RCT is believed to play a significant role in preventing 

atherosclerosis [24]. Through the RCT pathway; HDL 

carries extra cholesterol from peripheral organs, smooth 

muscle cells, and foamy macrophages to the liver. HDL 

carries cholesterol to the liver, where it is partially 

eliminated as bile and partially retained as cholesteryl 

esters [18]. Cholesterol efflux into the intestinal system is 

significantly influenced by RCT and TICE [25]. 

2. Anti-inflammatory Properties: By modifying different 

inflammatory pathways linked to atherosclerosis and 

cardiovascular disorders, HDL has anti-inflammatory 

properties [26]. It lessens adhesion and the recruitment 

of inflammatory cells into the artery wall by inhibiting 

the production of adhesion molecules on endothelial 

cells, such as VCAM-1 and ICAM-1 [27]. By inhibiting the 

synthesis of pro-inflammatory cytokines like TNF-alpha, 

IL-1, and IL-6, HDL reduces inflammation in the artery 

wall [28]. Moreover, HDL prevents LDL cholesterol from 

being oxidized, which stops the production of oxidized 

LDL particles, which are very pro-inflammatory and lead 

to endothelial dysfunction and atherosclerosis [29]. 

3. Endothelial Function: HDL enhances endothelial 

function by increasing the production and bioavailability 

of endothelial NO, a potent vasodilator that regulates 

vascular tone, improves blood flow, and inhibits platelet 

aggregation [30]. HDL stimulates endothelial NO 

synthase (eNOs) activity, leading to increased NO 

production by endothelial cells. HDL also inhibits 

endothelial cell apoptosis, preserving endothelial 

integrity and reducing endothelial dysfunction risk. It 

promotes endothelial repair processes and angiogenesis, 

contributing to vascular remodeling and repairs. These 

actions help maintain vascular health, prevent 

atherosclerosis, and reduce cardiovascular disease risk 
[31]. 

4. Role of HDL in Plaque stabilization: HDL plays a crucial 

role in plaque stabilization primarily through its ability 

to promote RCT. In RCT, extra cholesterol is extracted 

from peripheral tissues—including those within 

atherosclerotic plaques—and sent to the liver for 

excretion [32]. HDL contributes to the stabilization of the 

composition of plaques by reducing lipid accumulation 

and promoting the outflow of cholesterol from 

macrophages within plaques. Inhibiting the growth of 

plaque and its susceptibility to rupture is a crucial step 

in the pathophysiology of acute cardiovascular events, 

including myocardial infarction and stroke [33]. 

Furthermore, by lowering oxidative stress and 

inflammation in the plaque microenvironment, HDL's 

anti-inflammatory and antioxidant characteristics help 

to stabilize the plaque. In general, HDL's role in 

stabilizing plaque lowers the risk of problems associated 

to plaque and preserves arterial integrity [34]. 

GENETICS AND HDL: 

Various genetic variants associated with HDL metabolism and 

their impact on cardiovascular risk: 

APOA1 variants: APOA1 the major protein component of HDL 

particles. Mutations in APOA1 can influence the production 

and function of HDL particles [35].  

CETP variants: The CETP gene, which facilitates the transfer 

of cholesteryl esters from HDL to other lipoproteins. This 

dysregulation in HDL metabolism may contribute to an 

increased risk of cardiovascular disease, particularly in the 

presence of elevated levels of atherogenic lipoproteins [36]. 

LIPC variants: Hepatic lipase (LIPC) is an enzyme involved in 

the hydrolysis of triglycerides and phospholipids in 

lipoproteins, including HDL. Individuals carrying these 

variants may have a decreased risk of cardiovascular disease 

due to the protective effects of elevated HDL levels on lipid 

metabolism and atherosclerosis [37]. 

ABCA1 variants: ABCA1 gene which plays a crucial role in the 

process of RCT by facilitating the efflux of cholesterol from 

peripheral tissues to HDL particles [38].  

SCARB1 variants: SCARB1 is involved in the selective uptake 

of cholesterol from HDL particles by the liver and other 

tissues [39].  

APOC3 variants: APOC3, which plays a role in the regulation 

of triglyceride-rich lipoproteins [40]. 

ANGPTL3: Loss-of-function variations in the angiopoietin-like 

3 gene (ANGPTL3) have been linked to elevated HDL 

cholesterol and decreased triglyceride and low-density 

lipoprotein (LDL) cholesterol levels. The significance of 

ANGPTL3 in lipid metabolism and its potential as a 

therapeutic target to reduce cardiovascular risks are 
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highlighted by these genetic changes [41]. 

 

Gene Variant Impact on hdl metabolism Cardiovascular risk impact 

APOA1 Milano variant Increased HDL levels and efficiency in RCT Reduced risk of cardiovascular 
disease 

CETP TaqIB polymorphism Alters HDL levels and CETP activity Increased risk with high CETP 
activity 

LIPC Hepatic lipase 
variants 

Modulates hepatic lipase activity and HDL 
levels 

Lower risk with reduced hepatic 
lipase 

ABCA1 Mutations Impaired cholesterol efflux and decreased 
HDL 

Significant risk in Tangier disease 

SCARB1 Variants Affects cholesterol clearance from HDL Complex relationship with CV risk 

APOC3 Polymorphisms Impacts triglycerides and HDL cholesterol Increased risk due to high 
triglycerides 

GWAS (Genome-wide association study) have identified several genetic loci associated with HDL-related genes, including the 

APOA1/C3/A5 gene cluster, CETP gene, LIPC gene, ABCA1 gene, SCARB1 gene, and APOE gene, and their relationship with 

cardiovascular outcomes. Here’s an overview of the findings:  

GENE VARIANT IMPACT ON HDL METABOLISM CARDIOVASCULAR RISK IMPACT 

APOA1/ 
C3/A4/A5 

Variants in 
APOA1, APOA5, 
APOC3 

Variants in APOA1 and APOA5 are 
associated with increased HDL 
cholesterol levels. Variants in APOC3 
promote elevated triglycerides. 

Increased HDL linked to reduced cardiovascular risk, while 
elevated triglycerides in APOC3 variants lead to increased 
cardiovascular risk [42,43]. 

CETP Variants 
increasing CETP 
activity 

Genetic variants associated with 
increased CETP activity result in lower 
HDL cholesterol levels. 

Reduced HDL levels correlate with increased risk of 
cardiovascular disease [44]. 

 
Variants 
decreasing CETP 
activity 

Variants associated with reduced CETP 
activity lead to higher HDL cholesterol 
levels. 

Elevated HDL levels are associated with decreased 
cardiovascular risk [44]. 

LIPC Variants 
increasing 
hepatic lipase 
activity 

Certain variants linked to increased 
hepatic lipase activity lead to lower 
HDL cholesterol levels. 

Lower HDL levels are associated with increased 
cardiovascular risk [45]. 

 
Variants 
decreasing 
hepatic lipase 
activity 

Variants that reduce hepatic lipase 
activity may result in higher HDL 
cholesterol levels. 

Higher HDL levels are associated with reduced 
cardiovascular risk [45]. 

ABCA1 Variants 
affecting ABCA1 
function 

Defective ABCA1 function impairs 
cholesterol efflux, leading to 
cholesterol accumulation in tissues. 

Promotes atherosclerosis and increases cardiovascular risk 
[46]. 

SCARB1 Variants 
impacting 
SCARB1 activity 

Variants linked to decreased SCARB1 
activity lead to reduced HDL 
cholesterol clearance and increased 
plasma HDL levels. 

The impact on cardiovascular risk remains under 
investigation. Some studies suggest potential risk 
variations due to elevated HDL levels [47]. 

APOE Variants such as 
APOE ε2 and 
APOE ε4 

APOE ε2 allele associated with higher 
HDL cholesterol levels, while APOE ε4 
allele may adversely affect lipid 
profiles. 

APOE ε2 is linked to reduced cardiovascular risk, while 
APOE ε4 is associated with increased cardiovascular 
disease risk [48]. 

SIDT2 Functional 
variants in SIDT2 

Variants may significantly affect HDL 
cholesterol levels, contributing to 
dyslipidemia and lower HDL-C. 

Increased prevalence of lower HDL-C is linked to 
cardiovascular health challenges [49]. 

 
Clinical Implications: 
Short steps outlining the clinical relevance of HDL levels in risk prediction of cardiovascular disease: [50] 
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HDL levels are often included in lipid profiles for CVD risk 
assessment. Low HDL levels (<40 mg/dL for men, <50 mg/dL 
for women) are considered a risk factor for CVD. HDL levels 
can provide additional information beyond LDL cholesterol 
levels in assessing overall cardiovascular risk. However, HDL 
levels alone may not fully capture the complexity of 
cardiovascular risk and should be interpreted in conjunction 
with other risk factors. Emerging evidence suggests that HDL 
functionality may be more important than absolute HDL 
levels in predicting CVD risk [51]. 

The clinical relevance of HDL levels in the treatment of CVD 
lies in their role as a biomarker for risk assessment and 
guiding therapeutic strategies. Higher HDL cholesterol levels 
are generally considered cardio protective. However, 
interventions solely targeting HDL levels have shown limited 
efficacy in reducing cardiovascular events. Instead, a 
comprehensive approach that addresses overall lipid profile, 
lifestyle factors, and other modifiable risk factors is essential 
for effective CVD prevention and management [52]. 

I.Lifestyle Modifications: 
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I. Optimizing Lipid Levels: 

• Statins: Initiate statin therapy as first-line 

pharmacological treatment for individuals with 

elevated LDL cholesterol levels, regardless of HDL 

levels. Statins have been shown to reduce 

cardiovascular events and may modestly increase HDL 

cholesterol levels. Combination Therapy: Consider 

combination therapy with statins and other lipid-

lowering agents (e.g., ezetimibe, PCSK9 inhibitors) for 

individuals at high cardiovascular risk or with 

persistent dyslipidaemia despite statin therapy. 

Fibrate Therapy: In selected individuals with 

hypertriglyceridemia and low HDL cholesterol levels, 

fibrates may be considered to improve lipid profile 

and reduce cardiovascular risk. Niacin: Niacin 

(nicotinic acid) can increase HDL levels but has fallen 

out of favour due to its adverse effects and lack of 

consistent cardiovascular benefits in clinical trials. 

II. Management of Co morbidities: 

• Hypertension Control: Ensure optimal blood pressure 

control through lifestyle modifications and 

pharmacological therapy (e.g., angiotensin-converting 

enzyme inhibitors, angiotensin receptor blockers, 

calcium channel blockers, diuretics). Diabetes 

Management: Implement strategies for glycaemic 

control through lifestyle modifications, antidiabetic 

medications (e.g., metformin, sulfonylureas, SGLT2 

inhibitors, GLP-1 receptor agonists), and insulin 

therapy as needed. 

III. Assessment of HDL Functionality: 

• While routine clinical assays primarily measure HDL 

cholesterol levels, consider research-based or 

specialized tests to assess HDL functionality. 

IV. Individualized Approach: 

• Tailor treatment strategies based on individual 

patient characteristics, including age, gender, genetic 

predispositions, comorbidities, concomitant 

medications, and patient preferences. Regularly 

monitor lipid profiles, including HDL cholesterol 

levels, and adjust treatment regimens as needed to 

achieve optimal cardiovascular risk reduction. While 

directly targeting HDL levels as a treatment approach 

has limitations, optimizing HDL levels through 

lifestyle modifications, lipid-lowering therapy, 

management of comorbidities, and individualized 

treatment strategies can contribute to comprehensive 

cardiovascular risk reduction and management 

[53,54,55,56]. 

Future Directions: 

i. HDL Mimetics and Modulators: Developing synthetic 

HDL particles to mimic the beneficial functions of 

natural HDL, such as reverse cholesterol transport 

and anti-inflammatory properties [57]. Investigating 

compounds that can selectively modulate HDL 

metabolism and function, potentially enhancing its 

atheroprotective effects [58]. 

ii. Genetic Approaches: Studying genetic variations 

associated with HDL metabolism to identify novel 

therapeutic targets and pathways for intervention [59]. 

iii. Microbiome Influence: Exploring the role of gut 

microbiota in HDL metabolism and considering 

strategies to manipulate the microbiome to improve 

HDL levels and function [60,61]. 

iv. Epigenetic Regulation: Understanding epigenetic 

mechanisms that regulate HDL metabolism and 

exploring targeted interventions to modify gene 

expression and enhance HDL function [62]. 

v. Nanotechnology: Utilizing nanotechnology to design 

targeted delivery systems for HDL-modulating 

agents, enhancing their efficacy and minimizing off-

target effects. [figure3] [63,64] 

vi. Immunomodulation: Investigating the 

immunomodulatory functions of HDL and exploring 

strategies to harness these properties for therapeutic 

purposes, particularly in inflammatory conditions 

associated with cardiovascular disease [64,65]. 

vii. Metabolic Syndrome: Studying the impact of 

metabolic syndrome on HDL metabolism and 

developing tailored therapeutic approaches to 

address dyslipidaemia and related metabolic 

abnormalities [66]. 

viii. Emerging Therapeutics: Assessing the efficacy and 

safety of novel HDL-targeted therapies, such as 

apoA-I mimetic peptides, CETP (cholesteryl ester 

transfer protein) inhibitors, and LXR (liver X receptor) 

agonists, in clinical trials. [figure3] [67,68] 

ix. Precision Medicine: Advancing personalized 

approaches to HDL-targeted therapy by considering 

individual genetic, metabolic, and environmental 

factors to optimize treatment outcomes. 

 

 
 

Recent developments in HDL therapeutics have steered away 
from simply boosting HDL cholesterol levels towards 

enhancing HDL function, specifically its ability to remove 
cholesterol—a function compromised in cardiovascular 
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patients. Both pre-clinical and clinical investigations have 
substantiated the efficacy of HDL mimetic nanoparticles in 
bolstering cholesterol efflux, thereby stabilizing 
atherosclerotic plaques through anti-inflammatory pathways. 
Moreover, these nanoparticles exhibit immunomodulatory 
effects on immune cells like monocytes and macrophages, 
endowing them with multiple cardioprotective attributes that 
enhance vascular health. The ongoing phase III AEGIS-II trial 
assessing CSL112 offers promising insights, potentially 
revolutionizing acute myocardial infarction treatment by 
mitigating the risk of ischemic events in the critical post-
event phase. [69,70,71,72] 
 

Conclusion: 

Research on the relationship between HDL and cardiovascular 
disease (CVD) has revealed that higher HDL levels may not be 
as straightforward as previously thought. Functional 
properties of HDL, such as cholesterol efflux and anti-
inflammatory effects, may be more important predictors of 
cardiovascular health than absolute concentration. Genetic 
studies have identified specific variants related to HDL 
metabolism that may influence CVD risk independently of 
HDL levels. Clinicians should consider both HDL levels and 
HDL function when assessing cardiovascular risk. Further 
research is needed to understand the protective effects of 
HDL and develop targeted therapies for preventing and 
treating CVD. 
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TNF-alpha - Tumour necrosis factor-alpha 

VCAM – 1 – Vascular cell adhesion molecule 1 
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