

“Targeting Cellular Hypoxia in β cells and Autophagy in Prevention and Propagation of Type 2 Diabetes-A narrative review”

Kulvinder Kochar Kaur* , Gautam Nand Allahbadia , Mandeep Singh

Obstt & Gynae, specialist reproductive endocrinology & Infertility specialist, India

*Corresponding Author: Kulvinder Kochar Kaur, Obstt & Gynae, specialist reproductive endocrinology & Infertility specialist, India

Received Date: August 26, 2024; Accepted Date: September 04, 2024; Published Date: September 12, 2024

Citation: Kulvinder Kochar Kaur, Gautam Nand Allahbadia, Mandeep Singh (2024). “Targeting Cellular Hypoxia in β cells and Autophagy in Prevention and Propagation of Type 2 Diabetes-A narrative review”, J Biomedical Research and Clinical Advancements. 1(2) 06, DOI: BRCA-RA-24-006.

Copyright: Kulvinder Kochar Kaur, et al © (2024). This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

portrays a chronic disease possessing considerable hyperglycemia; dysfunctional insulin liberation by pancreatic β cells is an emblem of such disease. Recent studies have illustrated that hypoxia takes place in the pancreatic β cells of patients having T2D with hypoxia as a result leading to abnormalities of insulin liberation in addition to elimination of β cell mass via mechanistic modes inclusive of activation of hypoxia inducible factor alpha(HIF 1- α), induction of transcriptional suppressors along with activation of 5' AMP-activated protein kinase(AMPK). Earlier we had reviewed on the aetiopathogenesis of Type 2 diabetes mellitus(T2D) along with role of gutmicrobiota(GM),diabesity,oral health AGEs stimulated & ERand Inflammatory Stress- modulated control of the GLUT4 expression (SLC2A4) promoted genes,;details of epigenetics, mitochondrial melatonergic pathwaysand different methods of use of various plant products ,role of extracellular vesicles ,iron&mineral metabolism and umpteen other articles Here our concentration is on insight into β cell hypoxia that might result in dysfunctional insulin liberation in T2DM .An understanding of β cell hypoxia might aid in generation of innovative strategies for the treatment of T2DM . Further with emerging evidence of how autophagy might be implicated in propagation of Type 2 Diabetes,thereby targeting both hypoxia and autophagy might be the mechanistic modes of how separate plant products are contributing in T2D avoidance as well as propagation. Here we have attempted to give insight regarding how β cells hypoxia aids in generation of β cells impairment in T2D. Achieving greater insight of β cell hypoxia might aid in generating innovative approaches for T2D treatment.

Key words: Type 2 Diabetes(T2D); hypoxia; hypoxia inducible factor alpha(HIF 1- α); pancreatic β cells; transcriptional suppressors

Introduction:

Diabetes mellitus(DM) represents a chronic disorder associated with considerable hyperglycemia and portrays one of the commonest etiological factor of mortality along with morbidity globally .It has been determined that 529 million

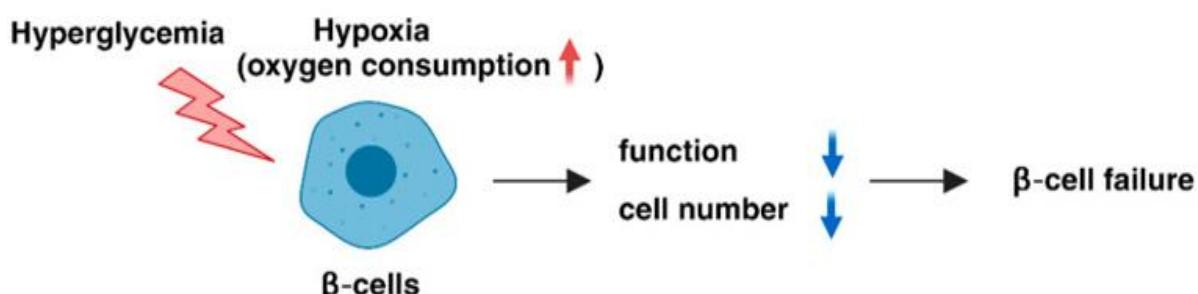
people have been living with DM worldover of which Type2 Diabetes mellitus(T2DM) was implicated in 96% of full patients, in addition to proportion of the patients with DM have been estimated to escalate greater than double of 1.3 billion individuals globally by year 2050[1]. Etiological factors

responsible for T2DM are complicated crosstalk amongst numerous genetic as well as environmental factors. The genetic makeup results in insulin resistance (IR) along with pancreatic β cells, whereas escalated weight along with sedentary life aggravates such metabolic abnormalities[2]. Dysfunctional insulin liberation in addition to IR specialized properties of T2DM[2]. In case of IR pancreatic β cells escalate insulin liberation regarding sustenance of normal glucose tolerance; nevertheless, once β cells lose their capability of escalating insulin liberation the plasma quantities of glucose get escalated. Continued exposure to hyperglycemia possess inimical sequelae over β cell numbers along with working;a postulate referred to as gluotoxicity which results in the generation as well as propagation of T2DM[3,4]. Hyperglycemia has a negative impacts via plethora of mechanistic modes toxic actions inclusive of Oxidative stress(OS) along with endoplasmic reticulum (ER) stress in addition to inflammation[5]. Nevertheless, recent studies have pointed that hyperglycemia further stimulates hypoxia in β cells[6,7]. Hypoxia in turn aids in β cell impairment through various mechanistic modes inclusive of hypoxia inducible factor alpha(HIF 1- α) [8]. Earlier we had reviewed on the aetiopathogenesis of Type 2 diabetes mellitus(T2D) along with role of gutmicrobiota(GM),diabesity,oral health AGEs Stimulated & ERand Inflammatory Stress- Modulated Control of the GLUT4 expression (SLC2A4 promotedgenes,;details of epigenetics, mitochondrial melatonergic pathwaysand different methods of use of various plant products ,role of ecv,iron&mineral metabolismand umpteen other articles [9-25].Here our concentration is on insight into β cell hypoxia that might result in dysfunctional insulin liberation in T2DM .An insight of β cell hypoxia might aid in generation of innovative strategies for the treatment of T2DM .

Methods

Thus a narrative review was carried out using the pubmed, Web of Science , Medline, Embase, Cochrane reviews, and Google Scholar, Search engine with the MeSH Terms; Type 2 diabetes mellitus(T2D); Hypoxia; the mitochondrial melatonergic pathways; oxidative phosphorylation (OXPHOS); adenosine triphosphate(ATP); insulin exocytosis;

hyperglycemia; Pancreatic β cells; prolyl hydroxylase domain(PHD) proteins ; HIFs from 1995 till date in 2024.

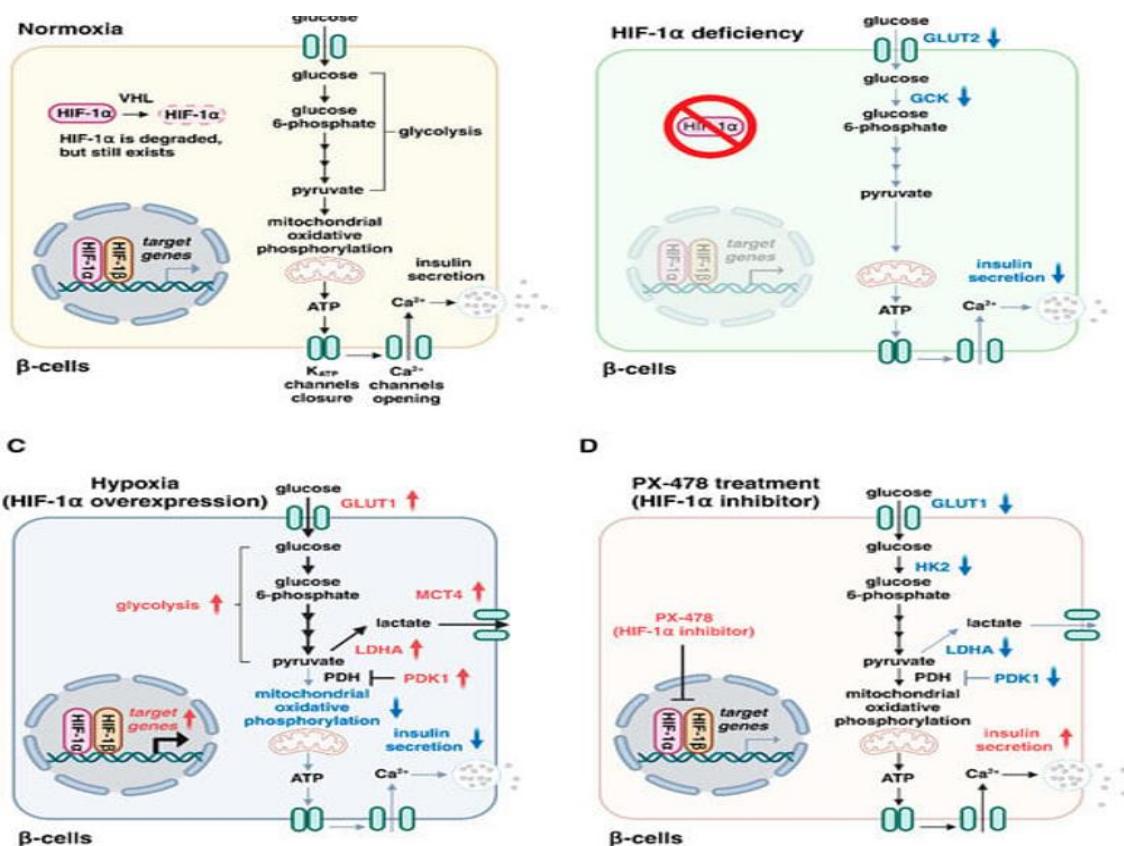

Results

We found a total of 250 articles ,out of which we selected 68 articles for this review.No meta-analysis was done.

2. Stimulation of Hypoxia in pancreatic β cells by hyperglycemia

In case of normoxic IR pancreatic β cells, glucose gets metabolized into pyruvate through glycolysis in addition to its further oxidation takes place for generation of adenosine triphosphate(ATP) through oxidative phosphorylation (OXPHOS).An escalation of ATP results in the closing of ATP sensitive potassium (KATP) channels In pancreatic β cells resulting in membrane depolarization, Calcium(Ca²⁺) influx as well as insulin vesicle exocytosis[26]. Cellular oxygen quantities are controlled by the harmony amongst supply along with requirement of oxygen in addition to once hypoxia takes place oxygen utilization is greater than its supply . Acknowledged the considerable requirement of mitochondrial OXPHOS at the time of insulin liberation, β cells utilize considerable oxygen quantities . Actually it has been revealed by the group of Yamagata et al.[[6,7,27], along with others that pancreatic islets of Langerhans as well as β cells lines become hypoxic [6,7], with ease under escalated glucose situation [6,7,27]. Such studies have further illustrated that islets in animal models of T2DM are hypoxic[28]. Thereby inadequate oxygen supply might further be implicated in β cells hypoxia in vivo.

The oxygen tension in maximum mammalian cells is varying amongst the values of 20-65 mmHg(parallel to 3-9%O₂) [29], as well as the average tissue oxygen tension at the surface of the normal mouse islets varying amongst the values of 44.7-45.7mmHg (parallel to 6.3-6.4%O₂) [30]. Hypoxic reactions have been illustrated to take place in culture situations in vitro [31]. Continuous exposure of MIN6 β cells to 5%O₂ tension result in cellular hypoxia with dysfunctional insulin liberation along with hampers β cells growth ; 3%O₂ tension resulted in apoptosis with ease in addition to diminished β cells numbers as well as working [32,33]. Thereby hypoxic stress represents the mechanistic mode behind β cells failure in case of T2DM[32,34]., [32reviewed in ref 35].(Figure1)


Courtesy ref no-35-Role of hypoxic stress in pancreatic β -cells. Hyperglycemia induces hypoxia in β -cells, mostly due to the high levels of oxygen consumption required for insulin secretion. Hypoxia, in turn, exerts deleterious effects on β -cell function and number, leading to progressive β -cell failure in type 2 diabetes.

3. Part of HIFs in Pancreatic Bcells

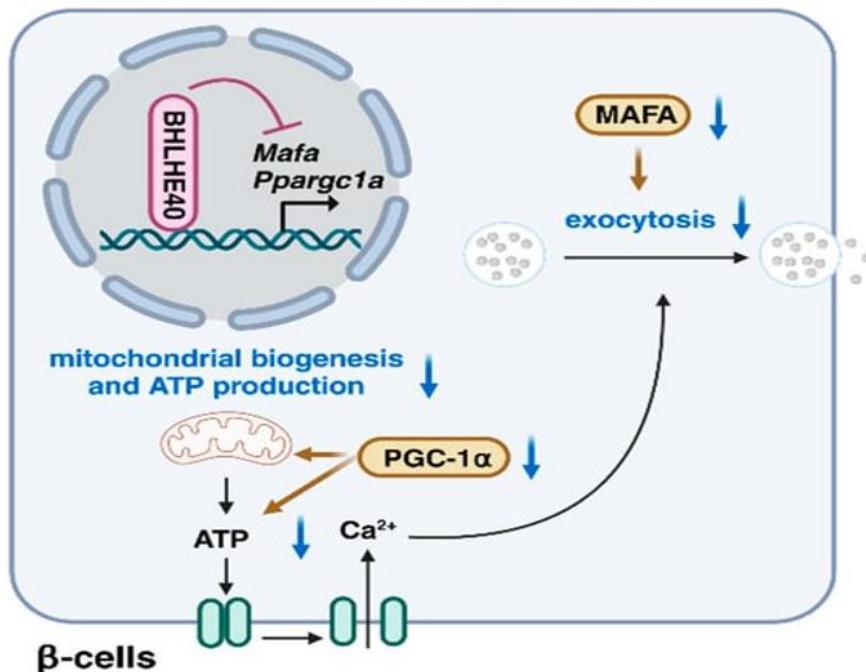
The sustenance of oxygen homeostasis is significant in reference to ATP generation in addition to energy accessibility in cells. Thereby all mammals possess the capacity of sensing, reacting to as well as rectifying hypoxia. HIFs portray crucial members of the basic-loop-helix PerArntSim transcription factor family along with are comprised of oxygen sensitive HIF 1- α subunit in addition to a HIF 1B/ aryl hydrocarbon receptor nuclear translocator (ARNT) subunit which gets constitutively expressed [31,36,]. Three kinds of HIFs are existent (HIF 1- α , HIF 2- α , in addition to HIF 3- α); nevertheless, maximum of the transcriptional reactions are apparently secondary to HIF 1- α , along with HIF 2- α [37]. At the time of normoxic situations, HIF 1- α undergoes hydroxylation at the 2proline residues amongst the oxygen based breakdown domain by the prolyl hydroxylase domain(PHD) proteins in the existence of oxygen,2 oxoglutarate as well as iron . Hydroxylated, HIF 1- α subunits get poly ubiquitinated by the vonHippel-Lindau protein in addition to are targeted for proteasomal breakdown. Hydroxylation by the PHD proteins gets avoided along with following breakdown in case of hypoxic situations . In view of this stabilized HIF 1- α undergoes dimerization with HIF 1B along with activation of a substantially greater quantities of target genes inclusive of those implicated in

glycolysis ,erythropoiesis , in addition to angiogenesis by binding to the hypoxia response element in their promoter areas.

Three kinds of PHD proteins(PHD1, PHD2 in addition to PHD 3)get expressed in Bcells[38], as well as HIF 1- α gets broken down pacily in case of normal oxygen situations . Nevertheless, HIF 1- α is existent in normoxic Bcells[39]. Glucose transporter 2 (GLUT2) portrays a lesser affinity glucose transporter whose requirement is for sustenance of normal glucose stimulated insulin liberation in Bcells[40]. Glucokinase,that is a rate restricting glycolytic enzyme, works in the form of a sensor for the physiological insulin liberation in Bcells[41]. Intriguingly elimination of Hif- α gene in Bcells results in dysfunctional insulin liberation in addition to glucose intolerance in mice having a diminished expression of soluble carrier family 2 member 2 (Slc2a2)gene that encodes GLUT2 along with Gck gene(that encoded glucokinase) [39]. Frequently HIF 1- α knockout (KO) diminished expression quantities of Slc2a2 in addition to Gck are considerably repressed in case of insulin liberation in MIN6 Bcells at the time of normoxic situations [39]. Thereby HIF 1 expression at basal quantities for insulin liberation is necessary, despite mechanistic modes behind this diminished expression quantities of Slc2a2 in addition to Gck by HIF1- α insufficiency are uncharted(Figure2A,B).

Legend for Figure 2.

Courtesy ref no-35-Roles of hypoxia-inducible factor (HIF)-1 in insulin secretion by β -cells. (A) Glucose is metabolized via the glycolytic pathway and mitochondrial oxidative phosphorylation, resulting in the generation of adenosine triphosphate (ATP), KATP channel closure, Ca^{2+} entry, and insulin exocytosis. Under normoxic conditions, HIF-1 α is degraded by von Hippel-Lindau (VHL) proteins. (B) HIF-1 α is degraded under normal oxygen conditions, but remains present in normoxic β -cells. HIF-1 α deficiency causes impaired insulin secretion with a decreased expression of glucose transporter type 2 (GLUT2) and glucokinase (GCK). (C) HIF-1 α overexpression switches glucose metabolism from mitochondrial oxidation to glycolysis, thereby leading to the attenuation of mitochondrial activity and impaired insulin secretion. (D) Treatment with the HIF-1 α inhibitor PX-478 prevents the upregulation of HIF-1 α targets (GLUT1, HK2, LDHA, and PDK1) and restores insulin secretion in metabolic workload. HK2, hexokinase 2; LDHA, lactate dehydrogenase A; MCT4, monocarboxylate transporter 4; PDH, pyruvate dehydrogenase; PDK1, pyruvate dehydrogenase kinase 1. Additionally, HIF 1- α confers protection against β cells damage in type 1 diabetes mellitus(the autoimmune kinds of diabetes) [42]. Furthermore HIF 1- α / ARNT insufficiency further repressed insulin liberation in β cells[43]. Interestingly, declined HIF 1- α in addition to ARNT /HIF1B have been found in T2DM patients [39,43]. Moreover HIF 1- α signaling gets repressed in a complicated manner by hyperglycemia via PHD proteins based mechanistic modes[8,44]. Such findings robustly portray that HIF 1- α proteins possess a significant part in sustenance of β cells working as well as the manner dysfunctional HIF 1 signaling is responsible for β cells impairment in type2 diabetics . Compared to that it have further been illustrated that HIF 1- α expression is escalated in the β cells of various diabetic animals, inclusive of ob/ob mice, mice which received high fat diet(HFD), in addition to db/db mice [7,45]. Maintenance of HIF 1- α overexpression by the elimination of Vhl gene(implicated in encoding vonHippel-Lindau protein) results in dysfunctional insulin liberation along with glucose intolerance in mice[46], pointing that the upregulation of HIF 1- α is inimical for the working of β cells as well as aids in T2DM generation. HIF 1- α results in the activation of the transcription of the genes encoding GLUT 1, glycolytic enzymes(glucose-6- phosphatase isomerase, and phosphoglycerate mutase)ii) pyruvate dehydrogenase kinase (PDK) iii) lactate dehydrogenase A(LDHA) in addition to iv) monocarboxylase transporter 1(MCT4) [47], PDK 1 is involved in the inactivation of the enzyme pyruvate dehydrogenase which is responsible for the transformation of pyruvate to acetylCoA for the mitochondrial tricarboxylic acid(TCA)/Krebs Cycle. LDHA prevents pyruvate from gaining entry in to TCA by transforming pyruvate to lactate in addition to MCT4 facilitates extrusion of lactate from cells.


Sequentially, the major influence of HIF 1- α on glucose metabolism is switching energy metabolism from mitochondrial respiration to glycolysis. Nevertheless, mitochondrial oxidative metabolism possesses key part in the regulation of insulin liberation[48]. the main exposition for the inimical actions in reference to HIF 1- α on insulin liberation is amelioration of mitochondrial actions(Figure2C). Interestingly, therapy of diabetic mice by utility of HIF 1 hampering agent PX-478 results in improvement of insulin liberation along with glucose intolerance[45], indicating that hampering HIF 1- α might be a plausible treatment for type2 diabetics(Figure2D). Overall such outcomes point that a harmonious in addition to sufficient quantities of HIF 1- α actions is imperative for the normal insulin liberation by pancreatic β cells.

Compared to that HIF 2- α a paralog(created by gene duplication) of HIF 1- α further undergoes dimerization with HIF 1B for the activation of target genes in reaction to hypoxia. Nevertheless, HIF 1- α as well as HIF 2- α possess unique Part in β cells .The manner described earlier, β cells particular Hif 1- α KO mice illustrate dysfunctional insulin liberation along with glucose intolerance[39] Compared to that HIF 2- α insufficiency in β cells does not lead to dysfunctional insulin liberation along with glucose intolerance in mice getting normal chow diet[48]. A chronic escalation in mitochondrial metabolism escalates electron flux in the electron transport chain(ETC) leading to escalated generation of reactive oxygen species(ROS) [49]. HIF 2- α possesses significant part in the controlling of the cellular redox status by activation of the antioxidant gene expression Sod2 (encoding superoxide dismutase), as well as Cat(encoding catalase) in addition to confers protection against mitochondrial injury by ROS[50]. Frequently there is reduced expression of the antioxidant genes in the islets of β cells particular Hif 1- α KO mice along with such mice form dysfunctional insulin liberation along with glucose intolerance on getting HFD[49]. Such outcomes point that HIF 2- α is involved in preservation of β cells working in situations of metabolic excess by stimulating generation of antioxidant genes expression.

4. Part of Transcriptional Suppressors in Hypoxic β cells

Working of the HIFs is basically in the form of activators of transcription ; nevertheless, suppression of transcription further takes place for hampering events which possess considerable energy requirement in case of hypoxic situations[51]. Actually, 5% of genes inclusive of certain genes implicated in insulin liberation caused downregulation in hypoxic islets along with MIN6 β cells [32,33,52], pointing that genes suppression portrays one more adaptive reaction to hypoxia in β cells. Global gene expression evaluation displayed that basic- helix -loop-helix family member E40 (BHLHE40) in addition to activating transcription factor 3(ATF3) represent hypoxia stimulated transcriptional suppressors in Hypoxic β cells (Figure3) [33].

Hypoxia (BHLHE40 up-regulation)

Legend for Figure 3.

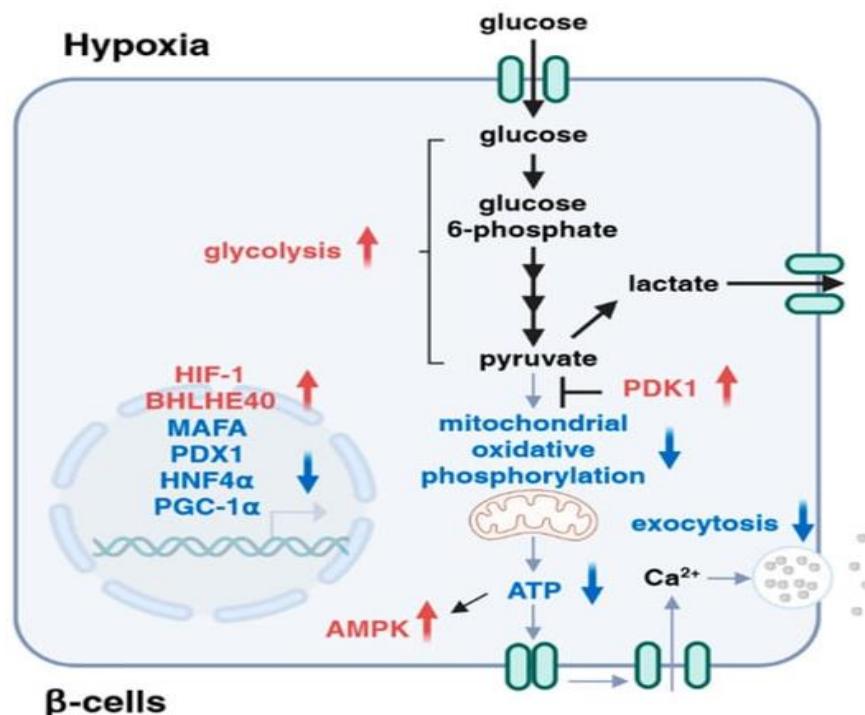
Courtesy ref no-35-The transcriptional repressor basic helix-loop-helix family member E40 (BHLHE40) is highly induced in hypoxic β -cells. BHLHE40 inhibits insulin secretion by suppressing the expression of musculoaponeurotic fibrosarcoma oncogene family A (MAFA), a transcription factor that regulates insulin exocytosis, and peroxisome proliferator-activated receptor- γ coactivator 1 α (PGC-1 α), which plays important roles in mitochondrial biogenesis and adenosine triphosphate (ATP) production.

BHLHE40(alias DEC1/SHARP2/STRA13) portrays a member of basic- helix -loop-helix family in addition to works by binding to DNA at the Class EB motifs[53]. The transcription factor musculoaponeurotic fibrosarcoma oncogene(MAFA) which possesses a key part in glucose stimulated insulin liberation,by controlling gene implicated in insulin exocytosis inclusive of Stxbp1(encoding MUNC 18-1) as well as Stx1a (encoding syntaxin A) [55]. Peroxisome Proliferator Activated Receptor γ Coactivator -1 α (PGC-1 α) whose encoding gets done by Ppargc1 α controls mitochondrial biogeneration as well as ATP generation[55]. Remarkable induction of the transcriptional suppressor BHLHE40 expression in β cells by hypoxia along with suppresses insulin liberation by suppressing expression of Mafa in addition to Ppargc1 α .. Persistently β cells particular Bhlhe40 insufficiency results in improvement of insulin liberation along with glucose intolerance in ob/ob mice.

ATF3 further represses the expression of genes implicated in glucose metabolism inclusive of Ins1(encoding insulin1) Ins2(encoding insulin2) in addition to Irs2(encoding insulin

Receptor substrate-1(IRS-2)] [33,56]. Additionally, the hypoxia stimulated upregulation of the proinflammatory Il1b as well as proapoptotic Noxa genes along with activation of caspase-3 get suppressed by Atf3 insufficiency in MIN6 Bcells [33,56,57].Such observations further point that the transcriptional suppressor ATF3 is implicated in hypoxia stimulated Bcells impairment in addition to elimination.

5. Controlling of Various Stress Pathways in Bcells by Hypoxia

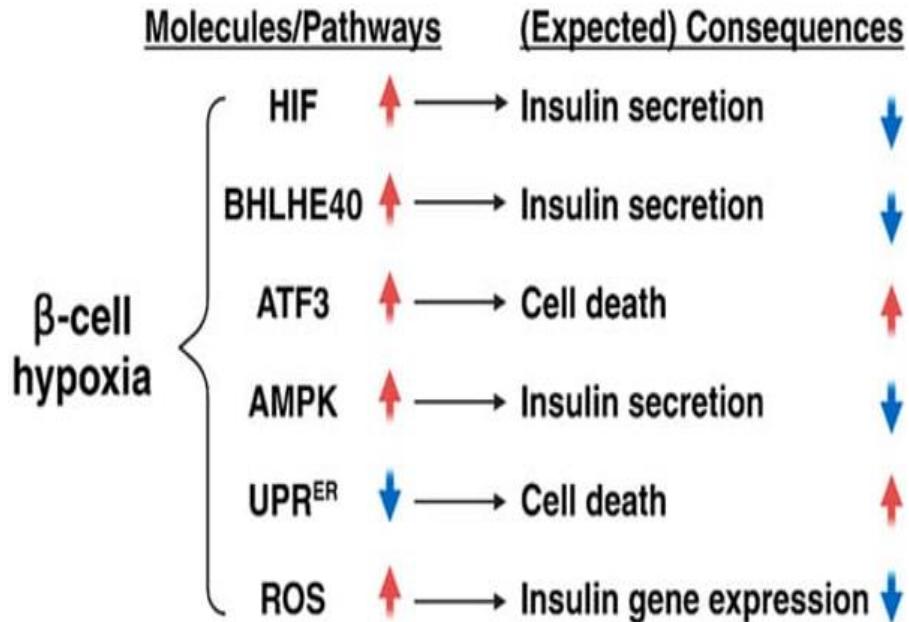

5' adenosine mono phosphate (AMP)-activated protein kinase(AMPK) portrays an evolutionary preserved serine /threonine kinase. Activation of AMPK takes place in reaction to energy stresses for instance hypoxia by sensing escalated quantities of AMP as well as/or adenosine di phosphate: ATP ratio by hampering anabolic events which generate ATP[58]. Hepatocyte nuclear factor 4 alpha (HNF-4 α) represents a transcription factor from the nuclear receptor super family which possesses significant key part in insulin liberation[59]. It was observed by the group of Yamagata et al.[60], that hypoxia stimulated AMPK activation diminished insulin liberation by diminishing the stability of HNF-4 α [60]. Thereby downregulation of HNF-4 α by activation of AMPK might be responsible for the dysfunctional insulin liberation in case of hypoxic situations.

Dysfunctional protein homeostasis(alia proteostasis) in the ER results in accrual of unfolded along with aberrantly folded protein alias ER stress, resulting in activation of the ER unfolded protein responses(UPRER) for the amelioration of proteostatic stress[61]. Hypoxia escalates β cells demise by hampering the expression of adaptive UPRER

genes inclusive of Hspa5(encoding heat shock protein family A member 5) Hsp90b1 (encoding heat shock protein90 beta family member1)Fkbp11 (encoding FKBP prolyl isomerase 11) in addition to spliced Xbp1(encoding X-box binding protein 1). Such hampering actions of hypoxia modulated by the activation of c-Jun-N-terminal kinase (JNK) as well as DNA damage inducible transcripts3 however are autonomous of HIF 1- α [62]. UPRER getting inactivated might be the cellular mechanistic mode behind escalated cell demise by hypoxic stress .

OS gets stimulated in tissue in case of escalated glucose situations. Noticeably, β cells possess considerable susceptibility specifically to ROS in view of their expression of minimal quantities of antioxidant enzymes inclusive of glutathione peroxidase(GPx), catalase(CAT) , as well as mitochondrial manganese SOD along with ROS formed in β cells decline insulin genes expression reducing the expression in addition to /or DNA binding actions of pancreatic as well as duodenal homeobox 1 (PDX1)

transcription facto[63]. Interestingly, hypoxia further escalates ROS generation at the mitochondrial ETC[64]. Such outcomes robustly point that hypoxia stimulated ROS generation further is implicated in β cell impairment . From these findings documented above it is clear that hypoxia impacts a plethora of events cascade of at the time of glucose stimulated insulin liberation . Particularly hypoxia ameliorated insulin liberation by switching glucose metabolism from mitochondrial respiration to glycolysis via the activation of HIF 1. Hypoxia further hampered insulin liberation by repressing the expression of MAFA(exocytosis) as well as Peroxisome Proliferator Activated Receptor γ Coactivator -1 α (PGC-1 α)via the activation of transcriptional suppressor BHLHE40 . Additionally, the hypoxia stimulated activation of AMPK resulted in downregulation of the expression of HNF-4 α resulting in aberrant insulin liberation. Moreover, hypoxia stimulated ROS generation hamper insulin gene expression via the decontrolling of PDX1(seeFigure4) .

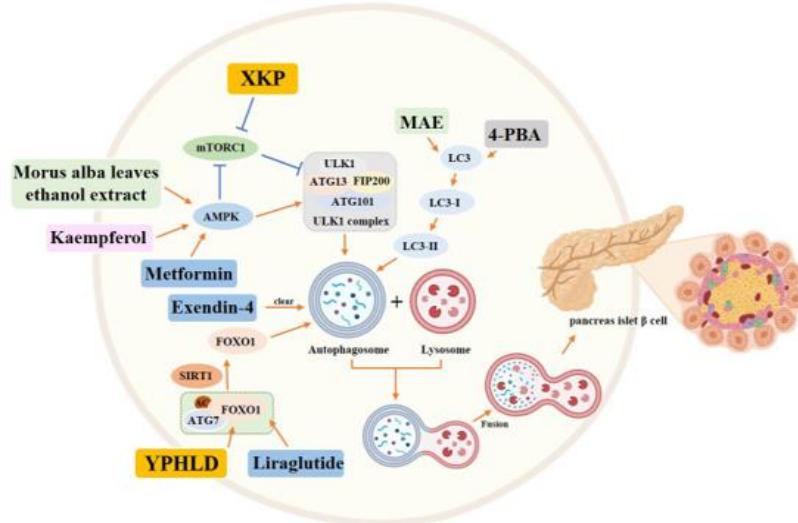

Legend for Figure 4

Courtesy ref no-35-Roles of hypoxia in insulin secretion. Hypoxia affects multiple steps during the processes of glucose-stimulated insulin secretion, including dysregulation of transcription factors (e.g., MAFA, PDX1, and HNF4 α), attenuation of mitochondrial activities, activation of AMPK, and inhibition of exocytosis

6.Conclusions

Diabetes implicates a clinical scenario where pancreatic β cells are engulfed in a vicious cycle which leads to a dysfunctional insulin reaction to glucose generated hyperglycemia that sees to it that β cells lose their efficacy in reference to insulin liberation that leads to a improvement of hyperglycemia that causes a minimum

of part restoration of β cell working [3]. Hypoxia guarantees proneness of β cells to impairment along with failure in addition to hampering of HIF 1- α actions as well as repression of BHLHE40 leads to improvement of insulin liberation along with hyperglycemia in case of animal models of diabetes, pointing that hypoxia might work in the form of an innovative therapeutic target for type2diabetes in addition to improvement of hypoxia might work as advantageous for the propagation of β cells impairment in T2D. Nevertheless, hypoxia further stimulates ATF3 expression, activation of AMPK inactivation of UPRER along with ROS generation (seeFigure5) .


Legend for Figure 5.

Courtesy ref no-35-Roles of hypoxia in β -cell function and number. Hypoxia causes impaired insulin secretion through the induction of hypoxia-inducible factor 1 (HIF-1) and basic helix-loop-helix family member E40 (BHLHE40). Hypoxia also suppresses insulin secretion through the activation of adenosine monophosphate-activated protein kinase (AMPK) and the induction of reactive oxygen species (ROS), whereas, it promotes β -cell death via the induction of activating transcription factor 3 (ATF3) and the inhibition of the endoplasmic reticulum unfolded protein response (UPRER).

Moreover, HIF 1- α basically guides the reaction to acute hypoxia as well as its expression gets diminished at the time of continuous hypoxia[65]. Thereby the robustness along with time period of hypoxia may result in activation of adaptive reaction in β cells in a differential manner. Further work would yield greater insight in the germane aiding of influence of every adaptive pathway in the event of manner β cell hypoxia would be essential for buttressing our understanding regarding pathophysiological mechanistic modes of T2 diabetes mellitus . Greater work would aid in provision of influence regarding innovative information in reference to influence of hypoxic stress over β cells impairment in addition to the efficacy of β cells hypoxia in the form of antidiabetic therapeutic target.

Moreover the impairment of β cells possess the capacity of generating via different mechanistic modes, inclusive of OS/ER or hypoxic stress, in addition to through inducing

cytokines; such events result in apoptosis, unregulated autophagy as well as and do not proliferate. Transdifferentiation amongst β cells along with α cells takes place in some pathological situations, in addition to and upcoming corroboration pointing that the β -cell dedifferentiation or transdifferentiation might be responsible for the diminished β -cell mass found in patients with robust T2DM. FOXO1, portrays a crucial transcription factor in insulin signalling (rev in detail by us in ref 20 and 23, 63]. Liang et al. [66], further documented HIF 1- α / FOXO1 axis regulated autophagy conferred protection for β cell survival in case of hypoxia in human islet by utility of CoCl₂ escalating β -cell apoptosis as well as chloroquine aggravated autophagy hampering in case of FOXO1KO accelerated apoptosis with immunofluorescent staining reported that significant reduction in LC3 in addition to p62/SQSTMW expression quantities which were negatively associated with glycated haemoglobin A1c (HbA1c) inpatients with robust T2DM. Thereby HIF 1- α / FOXO1 axis controlled autophagy which is of advantage for β cells survival under hypoxia in human islets. Furthermore, emerging reports have displayed advantage of restoration of autophagy in pancreatic β cells as a therapeutic target for type2Diabetes as displayed by Zhao et al. [67], as well as we had detailed autophagy comprehensively previously [68]. Thereby targeting hypoxia as well as autophagy might be the next line of treatment for preventing robust T2DM the way illustrated in figure 6 by different plant extracts and traditional Chinese medicines [rev in det in ref no 67].

Legend for Figure 6

Courtesy ref no-67-Role of autophagy in pancreatic islet β cells in the diabetic state. Yellow rectangle: Traditional Chinese compounds; Blue rectangle: Chemical drugs; Pink rectangle: Monomers from Chinese Herbal; Gray rectangle: Experimental Chemicals. →: activate; →: inhibit.

References

- Ong KL, Stafford LK, McLaughlin SA, Boyko EJ, Vollset SE, Smith AE, et al. Global, regional, and national burden of Diabetes from 1990 to 2021 with projections of Prevalence to 2050: a systematic analysis for the global burden of Diabetes study 2021. *Lancet* 2023;402:2354-66.
- DeFronzo RA, Abdul-Ghani MA. Preservation of β cell functions: the key to Diabetes prevention. *J Clin Endocrinol Metab* 2011;96:3068-75.
- Prentki M, Nolan CJ. Islets β cells failure in Type 2 Diabetes. *J Clin Investig* 2006;116:1802-12.
- Hudish LI, Reusch JEB, Sussel L. β cell dysfunction during progression of metabolic syndrome to Type 2 Diabetes. *J Clin Investig* 2019; 129:4001-8.
- Bensellam M, Laybutt DR, Jonas JC. The molecular mechanisms of pancreatic β cells gluotoxicity: recent findings and Future research directions. *Mol Cell Endocrinol* 2012;364:1-27.
- Sato Y, Endo H, Okuyama H, Takeda T, Iwahashi H, Imagawa A, Yamagata K, et al. Cellular hypoxia pancreatic β cells due to high levels of oxygen consumption for insulin secretion in vitro. *J Biol Chem* 2011;286:12524-32.
- Bensellam M, Duvillie B, Rybachuk G, Laybutt DR, Magnan C, Guiot Y, et al. Glucose induced O₂ consumption Hypoxia inducible factors-1 and 2 in rat insulin secreting β cells. *PLoS ONE* 2012;7:e29807.
- Catriona SB, Zheng X. Hypoxia and hypoxia inducible factors in Diabetes and its Complications. *Diabetologia* 2021;64:709-16.
- Kulvinder Kochar Kaur, Allahbadia GN, Singh M. Sarcopenic Obesity-A Minireview-Does it Lead to a Greater Incident of Type 2 Diabetes, Metabolic Syndrome or Mortality than When Sarcopenia or Obesity Exist Separately. *Archives of Diabetes and Endocrine System* 2019;(2)(1):26-32
- Kulvinder Kochar Kaur, Allahbadia GN, Singh M.. Importance of Simultaneous Treatment of Obesity and Diabetes Mellitus: A Sequelae to the Understanding of Diabesity-A Review. *Obes Res Open J*. 2019; 6(1): 1-10. doi: 10.17140/OROJ-6-136
- Kulvinder Kochar Kaur, Allahbadia GN, Singh M. "Obesity and Oral Health-Emphasis on Early Childhood Caries (ECC) and Trying to Implement Prevention Strategies Right from Neonatal Age Besides Updating on other Causes of the Same-A Mini Review". *EC Dental Science* 2019;18(11); 51-60.
- Kulvinder Kochar Kaur, Allahbadia GN, Singh M. Utilization of Extracellular Vesicles for Treatment of Type 1 Diabetes Mellitus (T1DM) Along with Type 2 Diabetes Mellitus (T2DM) besides Complications Associated with Diabetes- A Systematic Review. *J Clin Diabetes Obes*.2020.1.001-013. DOI: 10.47755/
- Kulvinder Kochar Kaur, Allahbadia GN, Singh M. Role of Adipocyte impairment in Heart Failure Induction in subjects that are obese along with prediabetes and overt Diabetes mellitus -A Systematic Review. *J Cardiol & Card Disord* 2021;2(1):1-21.
- Kulvinder Kochar Kaur, Allahbadia GN, Singh M. 'The Association of Non Viral Liver Diseases from NAFLD to NASH to HCC with the Pandemic of Obesity ,Type 2 Diabetes,or Diabesity & Metabolic Syndrome - Etiopathogenetic Correlation along with Utilization for Diagnostic & Therapeutic Purposes-A Systematic review'. *Journal of Endocrinology Research* 2021;3(2):1(1-26). DOI: <https://doi.org/10.30564/jer.v3i2.3520>
- Kulvinder Kochar Kaur, Allahbadia GN, Singh M. Potential role of Epigenetic Modulation in prevention or therapy for Diabetic Kidney Disease-still a dream or a reality -A

Systematic Review". *J Diab Nephro Diab Mgmt* 2021;1:1(1-26).

16. Kulvinder Kochar Kaur,Allahbadia GN,Singh M. "Diabetic Cardiomyopathy:An Update on its Pathophysiology with Specific Emphasis on Epigenetics Modifications Besides Treatment-A systematic review". *BOHR International Journal of Current Research in Diabetes and Preventive Medicine* 2022; 1 (1) : 1-16. <https://doi.org/10.54646/bijrdpm.001>

17. Kulvinder Kochar Kaur,Allahbadia GN,Singh M. The utility of phytochemicals obtained from plants for the treatment of type 2 Diabetes Mellitus with Emphasis on the Epigenetic Alterations related to T2DM& their Impact as Therapeutic Agents in the form of so called Epi-drugs:a systematic review. *Adv Obes Weight Manag Control.* 2021;11(6):195–206.

18. Kulvinder Kochar Kaur,Allahbadia GN,Singh M. Role of *Trigonella foenum-graecum* Extract along with Ursolic Acid a Pentacyclic Triterpenoid as Newer Plant Productsfor the Therapy of Diabetes Mellitus - A Short Communication". *Acta Scientific Nutritional Health* 2021; 5(6) : (12-15) .

19. Kulvinder Kochar Kaur,Allahbadia GN,Singh M. Development of protein tyrosine phosphatase 1B (PTPIB)Inhibitors from marine sources and other natural products-Futureof Antidiabetic Therapy : A Systematic Review *Korean Journal of Food & Health Convergence* 5(3),pp.21-33. ISSN: 2586-7342 © 2019 KFHCA. <http://www.kjfhc.or.krdoi:> <http://dx.doi.org/10.13106/kjfhc.2019.vol5.no3.21>

20. Kulvinder Kochar Kaur,Allahbadia GN,Singh M. 'An Update on the Therapeutic Potential of Herbal Preparations with regards to Molecular & Biochemical Mechanisms in the Management of Diabetes Mellitus :a Systematic Review ". *World Journal of Advance Healthcare Research* 2022; 6(3) : 1-17.

21. Kulvinder Kochar Kaur,Allahbadia GN,Singh M. Utilization of extracellular vesicles for treatment of Type 1 Diabetes Mellitus (T1DM) along with 2 T2DM besides Complications associated with Diabetes-A Systematic Review". *J Clin DiabetesObes*;2020(1.)001-013. DOI: 10.47755

22. Kulvinder Kochar Kaur,Allahbadia GN,Singh M. Association of Iron Metabolism Abnormalities as Etiopathogenetic Factor in Alteration of Beta Cell Function and Impairment in Generation of Diabetes Mellitus: A Systematic Review. *J Clinical Research and Reports*, 2022;11(1); DOI:[10.31579/2690-1919/241](https://doi.org/10.31579/2690-1919/241).

23. Kulvinder Kochar Kaur,Allahbadia GN,Singh M. An Update onMechanistic Modes in AGEs Stimulated & ERand Inflammatory Stress- Modulated Control of the GLUT4 expression (SLC2A4 promoted) andAtherogenesis in Diabetes Mellitus-A Narrative Review. *Mathews J Cytol Histol.* 6(1):21:1-25.

24. Kulvinder Kochar Kaur,Allahbadia GN,Singh M. An update of use of therapeutic targeting of macrophages polarization status in the treatment of obesity induced insulin resistance ,chronic inflammation and type2 Diabetes mellitus-A Narrative Review". *World Journal of Advance Healthcare Research* 2023;7(1):1-19.

25. Kulvinder Kochar Kaur,Allahbadia GN,Singh M. ' Update on Etiopathogenesis of Type 1 Diabetes (T1D):Emphasis on part of Crosstalk of Gut Microbiome, Pancreatic Cells& Bystander Activation of Memory CD8+T cells with Mitochondrial MelatonergicPathway: Treatment Repercussions-A Narrative Review". *Universal Library of Medical and Health Sciences* 2023;1(1):41-64.

26. Rorsman P, Renstrom E. Insulin granule dynamics in pancreatic Bcells. *Diabetologia* 2003;46:1029-45.

27. WangU,Upshaw L,Strong DM,RobertsonRP,Reems JA.Increased oxygen consumption rates in response to high glucose detected by a novel oxygen biosensor system in non human primate and human islets. *J Endocrinol* 2005;185:445-55.

28. Carlsson PO,Anderson A,Jansson L . Pancreatic isletblood flow in normal and obese hyperglycemic (ob/ob) mice. *Am J Physiol Endocrinol Metab* 1996;271:E990-E995.

29. Spencer JA, Ferraro F,Roussakis E,KleinA,WuJ,Runnels JM. Direct measurements of local oxygen Concentration in the Bone marrow of live animals. *Nature* 2014;508:269-73.

30. Carlsson PO, LissP, Anderson A,Jansson L. Measurements of oxygen tension in native and transplanted rat pancreatic islets . *Diabetes* 1998;47:1027-32.

31. Solaini G,Baracca A,Lenaz G,Sgarbi G. Hypoxia and mitochondrial oxidative metabolism. *Biochim Biophys ActaBioenerg* 2010; 1797:1171-77.

32. Sato Y, Inoue M,YoshizawaT, YamagataK. Moderate hypoxia induces pancreatic Bcell dysfunction with HIF 1 independent gene expression .*PLoS ONE* 2014;9:e1148683.

33. TsuyamaT, Sato Y, YoshizawaT,MatsuokaT YamagataK. Hypoxia causes Bcell dysfunction and impairs insulin secretion by activating the transcriptional repressor BHLHE40. *EMBORep* 2023;24:e56227.

34. YamagataK, TsuyamaT, Sato Y. Roles of Bcell function in the progression of Type2 Diabetes. *Int J Mol Sci* 2024;25:4186.

35. Bensellam M, Jonas JC, Laybutt DR. Mechanisms of Bcells dedifferentiation in Diabetes : recent findings and Future research directions. *J Endocrinol* 2018;236; R109- R143.

36. LeeP,Chandel NS,Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. *Nat Rev Mol Cell Biol* 2020;21:268-83.

37. Keith B, JohnsonRS,Simon MC. HIF1α and HIF 2-α:sibling rivalry in tumor growth and progression. *Nat Rev Cancer* 2011; 12: 9-22.

38. HoangM,J E,Janssen SM,Nasteska D,Cuozzo F,Hodson DJ,et al. Isoform specific roles of prolyl hydroxylases in the regulation of pancreatic Bcell function. *Endocrinology* 2022;163:bqab226.

39. ChengK,HoK,StokesR,ScottC,Lau SM,Hawthorne WJ,et al. Hypoxia inducible factor-1α regulates Bcell function in mouse and human islets. 2010; 120:2171-83.

40. Guillam MT, Hummler E, Schaefer E, Wu JY, Birnbaum MJ, Beermann F, et al. Early Diabetes and abnormal postnatal pancreatic development in mice lacking Glut2. *Nat Genet* 1997;17:327-30.

41. Matchinsky FM. Glucokinase, glucose homeostasis, and Diabetes mellitus. *Curr Diabetes Rep* 2005;5:171-6.

42. Nomoto H, Pei L, Montemurro C, Rosenburger M, Furterer A, Coppola G, et al. Activation of the HIF1 α / PFKB3 stress response pathway in beta cells in type1 diabetes. *Diabetologia* 2021;64:709-16.

43. Gunton JE, Kulkarni RN, Yim SH, Okada T, Hawthorne WJ, Tseng YH, Robertson RP, et al. Loss of ARNT / HIF1B mediated altered gene expression in human Type2 Diabetes. *Cell* 2005;122:337-49.

44. Zheng X, Narayanan S, Xu C, Angelstig SE, Grunler J, Zhao A, et al. Repression of Hypoxia inducible factor-1 α contributes to increased reactive oxygen species production in Diabetes. *eLife* 2022;11:e70714.

45. Ilegems E, Bryzgalova G, Correia J, Yesildag B, Berra E, Ruas JL, et al. HIF1 α inhibitor PX-478 preserves pancreatic Bcells function in Diabetes. *Sci Transl Med* 2022; 14:eaba9112.

46. Cantley J, Selman C, Shukla D, Abramov AY, Forstreuer F, Esteban MA, et al. Deletion of the von Hippel-Lindau gene in pancreatic Bcells impairs glucose homeostasis in mice. *J Clin Investig* 2009; 119:125-35.

47. Semenza GL. HIF1 mediates responses to intratumoral hypoxia and oncogenic mutations. *J Clin Investig* 2013; 123:3664-71.

48. Maechler P, Wolheim CB. Mitochondrial function in normal and diabetic Bcells. *Nature* 2001;414: 807-12.

49. Moon JS, Riopel M, Seo JB, Herrero Aguayo V, Isaac R, Lee YS. HIF2 α preserves mitochondrial activity and glucose sensing in compensating Bcells in Obesity. *Diabetes* 2022;71:1508-24.

50. Scortegagna M, Ding K, O Y, G A, T F, Yan L, et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas 1-/- mice. *Nat Genet* 2003;35:331-40.

51. Cavadas MAS, Cheong A, Taylor CT. The regulation of transcriptional repression in hypoxia. *Exp Cell Res* 2017;356:173-81.

52. Gerber PA, Bellomo EA, Hodson DJ, Meur G, Solomou A, Mitchell RK, et al. Hypoxia lowers SLC30A8/ZnT8 expression and free cytosolic Zn $^{2+}$ in pancreatic Bcells. *Diabetologia* 2014;57:1635-44.

53. Sato F, Bhawal UK, Yoshimura T, Muragaki Y. DEC 1 and DEC 2 crosstalk between circadian rhythm and tumor progression. *J Cancer* 2016; 7: 153-9.

54. Cataldo LR, S T, Achanta K, Bharat S, Prasad RB, et al. MAFA and MAFB regulate exocytosis related genes in human Bcells. *Acta Physiol* 2022;234:e13761.

55. Puigserver P, Spiegelman BM. Peroxisome Proliferator Activated Receptor γ Coactivator -1 α (PGC-1 α): transcriptional coactivator and metabolic regulator. *Endocrin Rev* 2003;24:78-90.

56. Zmuda EJ, Qi L, Zhum X, Mirmira RG, Montminy MR, Hai T. The role of ATF3 an adaptive repressor gene in high fat diet induced Diabetes and pancreatic Bcells dysfunction. *Mol Endocrinol* 2010;24:1423-33.

57. Ku HC, Cheng CF. Master regulator activating transcription factor 3 in metabolic homeostasis and cancer. *Front Endocrinol* 2020;11:556.

58. Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. *Mol Cell* 2017;66:789-800.

59. Miura A, Yamagata K, Kakaei M, Hatakeyama H, Takayashi N, Fukui K, et al. Hepatocyte nuclear factor 4 alpha is essential for glucose stimulated insulin secretion by pancreatic Bcells. *J Biol Chem* 2006;281:5246-57.

60. Sato Y, Tsuyama T, Sato C, Karim MF, Yoshizawa T, Inoue M, Yamagata K. Hypoxia reduces HNF-4 α /MODY1 protein expression in pancreatic Bcells by activating AMP-activated protein kinase. *J Biol Chem* 2017;292: 8716-28.

61. Metcalf MG, Higushi-Sanabria R, Garcia G, Kimberly Tsui C, Delin A. Beyond the cell factory: homeostatic regulation of and by the UPR $^{\text{ER}}$. *Sci Adv* 2020;6:eabg9614.

62. Bensellam M, Maxwell EL, Chan JY, Luzuriaga J, West PK, Jonas JC, Gunton JE, Laybutt DR. Hypoxia reduces ER to golgi protein trafficking and increases cell death by inhibiting the adaptive unfolded protein response in mouse beta cells. *Diabetologia* 2016;59:1459-502.

63. Kitamura T. The role of FOXO1 Bcell failure and type2 Diabetes mellitus. *Nat Rev Endocrinol* 2013; 9:615-23.

64. Semenza GL. Hypoxia inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. *EMBO J* 2017; 36: - 252-9.

65. Hu Y, Lu H, Li H, Ge J. Basis and clinical implications of HIF1s in cardiovascular diseases. *Transl Mol Med* 2022;28:916-38.

66. Liang R, Liu N, Cao J, Liu T, Sun P, Cai X, et al. HIF 1- α /FOXO1 axis regulated autophagy is protective for Bcells survival under hypoxia in human islets. *Biochim Biophys Acta Mol Basis Dis* 2022;1868:166356.

67. Zhao X, Bie LY, Pang DR, Li X, Yang LF, Chen DD, et al. The role of autophagy in the treatment of type1 Diabetes mellitus and its complications:a review. *Front Endocrinol (Lausanne)* 2023;14:1228045.

68. Kulvinder Kochhar Kaur, Allahbadia GN, Singh M. Mode of Actions of Bile Acids in Avoidance of Colorectal Cancer Development and Therapeutic Applications in Treatment of Cancers--A Narrative Review". *Journal of Pharmacy and Nutrition Sciences*, 2022, 12, 35-53.

Submit your next manuscript to ScienceFrontier and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Research which is freely available for redistribution
- Submit your manuscript at: <https://sciencefrontier.org/submit-manuscript?e=2>

© The Author(s) 2024. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license